11 resultados para early neonatal sepsis

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated whether exposure to Gram-negative bacterial endotoxin in early neonatal life can alter neuroendocrine and immune regulation in adult animals. Exposure of neonatal rats to a low dose of endotoxin resulted in long-term changes in hypothalamic–pituitary–adrenal (HPA) axis activity, with elevated mean plasma corticosterone concentrations that resulted from increased corticosterone pulse frequency and pulse amplitude. In addition to this marked effect on the development of the HPA axis, neonatal endotoxin exposure had long-lasting effects on immune regulation, including increased sensitivity of lymphocytes to stress-induced suppression of proliferation and a remarkable protection from adjuvant-induced arthritis. These findings demonstrate a potent and long-term effect of neonatal exposure to inflammatory stimuli that can program major changes in the development of both neuroendocrine and immunological regulatory mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aldosterone-dependent epithelial sodium transport in the distal nephron is mediated by the absorption of sodium through the highly selective, amiloride-sensitive epithelial sodium channel (ENaC) made of three homologous subunits (α, β, and γ). In human, autosomal recessive mutations of α, β, or γENaC subunits cause pseudohypoaldosteronism type 1 (PHA-1), a renal salt-wasting syndrome characterized by severe hypovolemia, high plasma aldosterone, hyponatremia, life-threatening hyperkaliemia, and metabolic acidosis. In the mouse, inactivation of αENaC results in failure to clear fetal lung liquid at birth and in early neonatal death, preventing the observation of a PHA-1 renal phenotype. Transgenic expression of αENaC driven by a cytomegalovirus promoter in αENaC(−/−) knockout mice [αENaC(−/−)Tg] rescued the perinatal lethal pulmonary phenotype and partially restored Na+ transport in renal, colonic, and pulmonary epithelia. At days 5–9, however, αENaC(−/−)Tg mice showed clinical features of severe PHA-1 with metabolic acidosis, urinary salt-wasting, growth retardation, and 50% mortality. Adult αENaC(−/−)Tg survivors exhibited a compensated PHA-1 with normal acid/base and electrolyte values but 6-fold elevation of plasma aldosterone compared with wild-type littermate controls. We conclude that partial restoration of ENaC-mediated Na+ absorption in this transgenic mouse results in a mouse model for PHA-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In mammalian muscle a postnatal switch in functional properties of neuromuscular transmission occurs when miniature end plate currents become shorter and the conductance and Ca2+ permeability of end plate channels increases. These changes are due to replacement during early neonatal development of the γ-subunit of the fetal acetylcholine receptor (AChR) by the ɛ-subunit. The long-term functional consequences of this switch for neuromuscular transmission and motor behavior of the animal remained elusive. We report that deletion of the ɛ-subunit gene caused in homozygous mutant mice the persistence of γ-subunit gene expression in juvenile and adult animals. Neuromuscular transmission in these animals is based on fetal type AChRs present in the end plate at reduced density. Impaired neuromuscular transmission, progressive muscle weakness, and atrophy caused premature death 2 to 3 months after birth. The results demonstrate that postnatal incorporation into the end plate of ɛ-subunit containing AChRs is essential for normal development of skeletal muscle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The α9 acetylcholine receptor (α9 AChR) is specifically expressed in hair cells of the inner ear and is believed to be involved in synaptic transmission between efferent nerves and hair cells. Using a recently developed method, we modified a bacterial artificial chromosome containing the mouse α9 AChR gene with a reporter gene encoding green fluorescent protein (GFP) to generate transgenic mice. GFP expression in transgenic mice recapitulated the known temporal and spatial expression of α9 AChR. However, we observed previously unidentified dynamic changes in α9 AChR expression in cochlear and vestibular sensory epithelia during neonatal development. In the cochlea, inner hair cells persistently expressed high levels of α9 AChR in both the apical and middle turns, whereas both outer and inner hair cells displayed dynamic changes of α9 AChR expression in the basal turn. In the utricle, we observed high levels of α9 AChR expression in the striolar region during early neonatal development and high levels of α9 AChR in the extrastriolar region in adult mice. Further, simultaneous visualization of efferent innervation and α9 AChR expression showed that dynamic expression of α9 AChR in developing hair cells was independent of efferent contacts. We propose that α9 AChR expression in developing auditory and vestibular sensory epithelia correlates with maturation of hair cells and is hair-cell autonomous.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IN adult mice, the dominant adhesion molecules involved in homing to lymph nodes are L-selectin homing receptors on lymphocytes and the peripheral lymph node addressins on specialized high endothelial venules. Here we show that, from fetal life through the first 24 hr of life, the dominant adhesion molecules are the mucosal addressin MAdCAM-1 on lymph node high endothelial venules and its counterreceptor, the Peyer's patch homing receptor, integrin alpha 4 beta 7 on circulating cells. Before birth, 40-70% of peripheral blood leukocytes are L-selectin-positive, while only 1-2% expresses alpha 4 beta 7. However, the fetal lymph nodes preferentially attract alpha 4 beta 7-expressing cells, and this can be blocked by fetal administration of anti-MAdCAM-1 antibodies. During fetal and early neonatal life, when only MAdCAM-1 is expressed on high endothelial venules, an unusual subset of CD4 + CD3- cells, exclusively expressing alpha 4 beta 7 as homing receptors, enters the lymph nodes. Beginning 24 hr after birth a developmental switch occurs, and the peripheral node addressins are upregulated on high endothelial venules in peripheral and mesenteric lymph nodes. This switch in addressin expression facilitates tissue-selective lymphocyte migration and mediates a sequential entry of different cell populations into the lymph nodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Group B streptococci (GBS) are the most common cause of neonatal sepsis, pneumonia, and meningitis. The alpha C protein is a surface-associated antigen; the gene (bca) for this protein contains a series of tandem repeats (each encoding 82 aa) that are identical at the nucleotide level and express a protective epitope. We previously reported that GBS isolates from two of 14 human maternal and neonatal pairs differed in the number of repeats contained in their alpha C protein; in both pairs, the alpha C protein of the neonatal isolate was smaller in molecular size. We now demonstrate by PCR that the neonatal isolates contain fewer tandem repeats. Maternal isolates were susceptible to opsonophagocytic killing in the presence of alpha C protein-specific antiserum, whereas the discrepant neonatal isolates proliferated. An animal model was developed to further study this phenomenon. Adult mice passively immunized with antiserum to the alpha C protein were challenged with an alpha C protein-expressing strain of GBS. Splenic isolates of GBS from these mice showed a high frequency of mutation in bca--most commonly a decrease in repeat number. Isolates from non-immune mice were not altered. Spontaneous deletions in the repeat region were observed at a much lower frequency (6 x 10(-4)); thus, deletions in that region are selected for under specific antibody pressure and appear to lower the organism's susceptibility to killing by antibody specific to the alpha C protein. This mechanism of antigenic variation may provide a means whereby GBS evade host immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS) is a key element required to complete mammalian male sex differentiation. The expression pattern of MIS is tightly regulated in fetal, neonatal, and prepubertal testes and adult ovaries and is well conserved among mammalian species. Although several factors have been shown to be essential to MIS expression, its regulatory mechanisms are not fully understood. We have examined MIS promoter activity in 2-day postnatal primary cultures of rat Sertoli cells that continue to express endogenous MIS mRNA. Using this system, we found that the region between human MIS−269 and −192 is necessary for full MIS promoter activity. We identified by DNase I footprint and electrophoretic mobility-shift analyses a distal steroidogenic factor-1 (SF-1)-binding site that is essential for full promoter activity. Mutational analysis of this new distal SF-1 site and the previously identified proximal SF-1 site showed that both are necessary for transcriptional activation. Moreover, the proximal promoter also contains multiple GATA-4-binding sites that are essential for functional promoter activity. Thus multiple SF-1- and GATA-4-binding sites in the MIS promoter are required for normal tissue-specific and developmental expression of MIS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many inborn errors of metabolism, early treatment is critical to prevent long-term developmental sequelae. We have used a gene-therapy approach to demonstrate this concept in a murine model of mucopolysaccharidosis type VII (MPS VII). Newborn MPS VII mice received a single intravenous injection with 5.4 × 106 infectious units of recombinant adeno-associated virus encoding the human β-glucuronidase (GUSB) cDNA. Therapeutic levels of GUSB expression were achieved by 1 week of age in liver, heart, lung, spleen, kidney, brain, and retina. GUSB expression persisted in most organs for the 16-week duration of the study at levels sufficient to either reduce or prevent completely lysosomal storage. Of particular significance, neurons, microglia, and meninges of the central nervous system were virtually cleared of disease. In addition, neonatal treatment of MPS VII mice provided access to the central nervous system via an intravenous route, avoiding a more invasive procedure later in life. These data suggest that gene transfer mediated by adeno-associated virus can achieve therapeutically relevant levels of enzyme very early in life and that the rapid growth and differentiation of tissues does not limit long-term expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored how two independent variables, one genetic (i.e., specific rat strains) and another environmental (i.e., a developmental excitotoxic hippocampal lesion), contribute to phenotypic variation. Sprague-Dawley (SD), Fischer 344 (F344), and Lewis rats underwent two grades of neonatal excitotoxic damage: small and large ventral hippocampal (SVH and LVH) lesions. Locomotion was tested before puberty [postnatal day 35 (P35)] and after puberty (P56) following exposure to a novel environment or administration of amphetamine. The behavioral effects were strain- and lesion-specific. As shown previously, SD rats with LVH lesions displayed enhanced spontaneous and amphetamine-induced locomotion as compared with controls at P56, but not at P35. SVH lesions in SD rats had no effect at any age. In F344 rats with LVH lesions, enhanced spontaneous and amphetamine-induced locomotion appeared early (P35) and was exaggerated at P56. SVH lesions in F344 rats resulted in a pattern of effects analogous to LVH lesions in SD rats--i.e., postpubertal onset of hyperlocomotion (P56). In Lewis rats, LVH lesions had no significant effect on novelty- or amphetamine-induced locomotion at any age. These data show that the degree of genetic predisposition and the extent of early induced hippocampal defect contribute to the particular pattern of behavioral outcome. These results may have implications for modeling interactions of genetic and environmental factors involved in schizophrenia, a disorder characterized by phenotypic heterogeneity, genetic predisposition, a developmental hippocampal abnormality, and vulnerability to environmental stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the reactivity of IgM with self-antigens in tissues by a quantitative immunoblotting technique showed striking invariance among newborns in the human and in the mouse. The self-reactive repertoire of IgM of adults was also markedly conserved; it comprised most anti-self reactivities that prevailed among neonates. Multivariate analysis confirmed the homogeneity of IgM repertoires of neonates toward self- and non-self-antigens. Multivariate analysis discriminated between newborn and adult repertoires for reactivity with two of five sources of self-proteins and with non-self-antigens. Our observations support the concept that naturally activated B lymphocytes are selected early in development and throughout life for reactivity with a restricted set of self-antigens.